Quantum many-body systems: Symmetry breaking

Xiao-Gang Wen

2020/02

What is a many-body quantum system?

- A many-body quantum system
	- $=$ Hilbert space V_{tot} + Hamiltonian H
	- The locality of the Hilbert space: ${\mathcal V}_{tot} = \otimes_{i=1}^N {\mathcal V}_i$
	- The *i* also label the vertices of a graph
- A quantum state, a vector in V_{tot} : $|\Psi\rangle = \sum \Psi(m_1, ..., m_N)|m_1\rangle \otimes ... \otimes |m_N\rangle,$ basis of \mathcal{V}_i : $\ket{m_i}\in \mathcal{V}_i$
- A local Hamiltonian $H = \sum_{x} H_{x}$ and H_{x} are local hermitian operators acting on a few neighboring \mathcal{V}_i 's.

What is a many-body Hamiltonian

• Consider a system formed by two spin- $1/2$ spins. The spin-spin interaction: $H = J(\sigma_1^x \sigma_2^x + \sigma_1^y)$ $\sigma_1^y \sigma_2^y + \sigma_1^z \sigma_2^z$. where $\sigma_i^{x,y,z}$ $i^{x,y,z}$ are the Pauli matrices acting on the i^{th} spin. $J < 0 \rightarrow$ ferromagnetic, $J > 0 \rightarrow$ antiferromagnetic. Is H a two-by-two matrix? In fact $H = -J[(\sigma^x \otimes I) \cdot (I \otimes \sigma^x) + (\sigma^y \otimes I) \cdot (I \otimes \sigma^y) + (\sigma^z \otimes I) \cdot (I \otimes \sigma^z)]$ H is a four-by-four matrix:

$$
\sigma_1^z \sigma_2^z = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \sigma_1^x \sigma_2^x = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \qquad \sigma_1^x \sigma_2^z = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}
$$

 \bullet $\sigma^z_i=l\otimes\dots\otimes l\otimes\sigma^z\otimes l\otimes\dots\otimes l$ is a $2^{\textsf{N}_{\textsf{site}}}.$ dimensional matrix **Example:** An 1D ring formed by \bf{L} spin-1/2 spins:

$$
H = -\sum_{i=1}^{L} \sigma_i^x \sigma_{i+1}^x - h \sum_{i=1}^{L} \sigma_i^z
$$

– transverse Ising model. H is a $2^L \times 2^L$ matrix.

Many-body spectrum using Octave (Matlab or Julia)

What are quantum phases and quantum phase transitions?

• Phases are defined through phase transitions. *g 2*

What are phase transitions?

As we change a parameter g in Hamiltonian $H(g)$, the ground state energy density $\epsilon_{g} = E_{g} / V$ or the average of a local operator $\langle \hat{O} \rangle$ may have a singularity at g_c : the system has a phase transition at g_c . The Hamiltonian $H(g)$ is a smooth function of g . How can the ground state energy density ϵ_{α} be singular at a certain g_c ?

• There is no singularity for finite systems. Singularity appears only for infinite systems.

 \rightarrow Spontaneous symmetry breaking causes phase transition.

Symmetry breaking theory of phase transition

It is easier to see a phase transition in the semi classical approximation of a quantum theory.

- Variational ground state $|\Psi_{\phi}\rangle$ for H_{ϱ} is obtained by minimizing energy $\epsilon_g(\phi) = \frac{\langle \Psi_\phi | H_g | \Psi_\phi \rangle}{V}$ against the variational parameter ϕ . $\epsilon_{g}(\phi)$ is a smooth function of ϕ and g. How can its minimal value $\epsilon_{\mathbf{g}} \equiv \epsilon_{\mathbf{g}}(\phi_{\text{min}})$ have singularity as a function of \mathbf{g} ?
- Minimum splitting \rightarrow singularity in $\frac{\partial^2 \epsilon_g}{\partial \sigma^2}$ $\frac{\partial^2 \mathbf{g}}{\partial \mathbf{g}^2}$ at \mathbf{g}_c . Second order trans. State-B has less symmetry than state-A. State-A \rightarrow State-B: spontaneous symmetry breaking.

Example: meanfield symmetry breaking transition

Consider a transverse field Ising model $H = \sum_i -J\sigma_i^x\sigma_{i+1}^x - h\sigma_i^z$ Use trial wave function $|\Psi_{\phi}\rangle = \otimes_i |\psi_i\rangle$, $|\psi_i\rangle = \cos \frac{\phi}{2} |\uparrow\rangle + \sin \frac{\phi}{2} |\downarrow\rangle$ to estimate the ground state energy $\epsilon_h(\phi) = \langle \Psi_{\phi} | H | \Psi_{\phi} \rangle = - \sum \langle \psi_i | \sigma_i^{\times} | \psi_i \rangle \langle \psi_{i+1} | \sigma_{i+1}^{\times} | \psi_{i+1} \rangle - h \sum \langle \psi_i | \sigma_i^{\times} | \psi_i \rangle.$ $= (2J\cos\frac{\phi}{2}\sin\frac{\phi}{2})^2 - h(\cos^2\frac{\phi}{2} - \sin^2\frac{\phi}{2}) = \sin^2\phi - h\cos\phi$ Phase transition at $h/J = 2$. $(h/J = 1.5, 2.0, 2.5)$

• Why $\epsilon_h(\phi) = \epsilon_h(-\phi)$? Z₂-Symmetry: $U = \prod_j \sigma_j^z$, $U^2 = 1$. Symmetry trans.: $U\sigma_i^z U^{\dagger} = \sigma_i^z$, $U\sigma_i^x U^{\dagger} = -\sigma_i^x$, $U\sigma_i^y U^{\dagger} = -\sigma_i^y$ i . $\rightarrow UHU^{\dagger} = H$. If $H|\psi\rangle = E_{\text{grad}}|\psi\rangle$, then $UH|\psi\rangle = E_{\text{grad}}U|\psi\rangle \rightarrow$ $UHU^{\dagger}U|\psi\rangle = E_{grad}U|\psi\rangle \rightarrow HU|\psi\rangle = E_{grad}U|\psi\rangle$ Both $|\psi\rangle$ and $U|\psi\rangle$ are ground states of H: Either $|\psi\rangle \propto U|\psi\rangle$ (symmetric) or $|\psi\rangle \not\propto U|\psi\rangle$ (symm.-breaking).

Ginzberg-Landau theory of continuous phase transition

- Trial wave function $|\Psi_{\phi}\rangle = \bigotimes_i (\cos \frac{\phi}{2}|\uparrow\rangle_i + \sin \frac{\phi}{2}|\downarrow\rangle_i)$: $U|\Psi_{\phi}\rangle = |\Psi_{-\phi}\rangle \rightarrow$ $\langle\Psi_\phi|H|\Psi_\phi\rangle = \langle\Psi_\phi|U^\dagger U H U^\dagger U|\Psi_\phi\rangle = \langle\Psi_{-\phi}|H|\Psi_{-\phi}\rangle \rightarrow 0$ $\epsilon(h, \phi) = \epsilon(h, -\phi)$
- If $|\Psi_{\phi=0}\rangle$ is the ground state \rightarrow symmetric phase. If $|\Psi_{\phi\neq 0}\rangle$ is the ground state \rightarrow symmetry breaking phase.

Order parameter and symmetry-breaking phase transition

 ϕ or σ_i^x are order parameters for the Z_2 symm.-breaking transition:

- Under Z_2 $(180^\circ$ S^z rotation), $\phi \rightarrow -\phi$ or $\sigma_i^x \rightarrow -\sigma_i^x$
- In symmetry breaking phase $\phi = \pm \phi_0$, $\langle \sigma_i^x \rangle = \pm$. In symmetric phase $\phi = 0$, $\langle \sigma^{\mathrm{x}}_i \rangle = 0$. (Classical picture)

Quantum picture of continuous phase transition

No symmetry breaking in quantum theory according to a theorem: If $[H, U] = 0$, then H and U share a commom set of eigenstates. In particular, the ground state $|\Psi_{\text{grad}}\rangle$ of H, is an eigenstate of U: $U|\Psi_{\text{grnd}}\rangle = e^{i\theta}|\Psi_{\text{grnd}}\rangle$. No symmetry breaking. In our above discussion based on semi classical approximation, $|\Psi_{\phi}\rangle$ and $|\Psi_{-\phi}\rangle$ are not degenerate ground states. The true ground state is $|\Psi_{\text{grad}}\rangle = |\Psi_{\phi}\rangle + |\Psi_{-\phi}\rangle$ which do not break the symmetry. - **Quantum picture**: Symmetry-breaking phase has

- $\langle \Psi_{\text{grnd}} | \sigma_i^{\times} | \Psi_{\text{grnd}} \rangle = 0$ for the true ground state. But the ground states are nearly degenerate: $|\Psi_{\text{grad}}\rangle = |\Psi_{\phi}\rangle + |\Psi_{-\phi}\rangle$ and $|\Psi_{\rm grad}'\rangle = |\Psi_{\phi}\rangle - |\Psi_{-\phi}\rangle$ has an exponentially small energy separation $\Delta \sim {\rm e}^{-L/\xi}$.
- Discrete-symmetry-breaking phase has exponentially nearly degenerate ground states, which cannot be distingushed by any symmetric local operators, but can be distingushed by symmetry-breaking local operators

Excitations above the ground state: quasiparticles

The answer is very different for gapped system and gapless systems. Here, we only consider the definition of quasiparticle for gapped systems.

Consider a many-body system $H_0 = \sum_{x} H_x$, with ground state $|\Psi_{\text{grnd}}\rangle$.

• a point-like excitation above the ground state is a many-body wave function $|\Psi_{\xi}\rangle$ that has an energy bump at location ξ : energy density $= \langle \Psi_{\xi} | H_{\mathbf{x}} | \Psi_{\xi} \rangle$ ground state excitation engergy density ξ engergy density

More precisely, point-like excitations at locations ξ_i are something that can be trapped by local traps δH_{ξ_i} : $\ket{\Psi_{\xi_i}}$ is the gapped ground state of ${\mathit H}_0 + \sum_i \delta H_{\xi_i}$ – the Hamiltonian with traps. ∆ subspace ground–state Δ ->finite gap

Local and topological excitations

Consider a many-body state $|\Psi_{\xi_1,\xi_2,\dots}\rangle$ with several point-like excitations at locations ξ_i .

Can the first point-like excitation at ξ_1 be created by a local operator O_{ξ_1} from the ground state: $|\Psi_{\xi_1,\xi_2,...}\rangle=O_{\xi_1}|\Psi_{\xi_2,...}\rangle$? $|\Psi_{\xi_1,\xi_2,...}\rangle$ = the ground state of $H_0 + \delta H_{\xi_1} + \delta H_{\xi_1} + \cdots$ $|\Psi_{\xi_2,...}\rangle$ = the ground state of $H_0 + \delta H_{\xi_1} + \cdots$

If yes: the point-like excitation at ξ_1 is a **local** excitation If no: the point-like excitation at ξ_1 is a **topological** excitation

Local and topological excitations

Consider a many-body state $|\Psi_{\xi_1,\xi_2,\dots}\rangle$ with several point-like excitations at locations ξ_i .

Can the first point-like excitation at ξ_1 be created by a local operator O_{ξ_1} from the ground state: $|\Psi_{\xi_1,\xi_2,...}\rangle=O_{\xi_1}|\Psi_{\xi_2,...}\rangle$? $|\Psi_{\xi_1,\xi_2,...}\rangle$ = the ground state of $H_0 + \delta H_{\xi_1} + \delta H_{\xi_1} + \cdots$ $|\Psi_{\xi_2,...}\rangle$ = the ground state of $H_0 + \delta H_{\xi_1} + \cdots$

If yes: the point-like excitation at ξ_1 is a **local** excitation If no: the point-like excitation at ξ_1 is a **topological** excitation **Example**: Consider an 1D Ising model $H_0 = -J\sum_i \sigma_i^z \sigma_{i+1}^z$ with - one of the degenerate ground states |Ψ0i = | ↑↑↑↑↑↑↑↑↑↑↑↑i

- a state w/ three point-like excitations $|\Psi_{\xi_1 \xi_2 \xi_3}\rangle = | \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \downarrow \downarrow \downarrow \uparrow \uparrow \uparrow \rangle$
- The point-like excitation at ξ_1 is a spin flip created by $\sigma_{\xi_1}^{\times}$ – a local excitation.
- The point-like excitations at ξ_2, ξ_3 are topological excitations that cannot be created by any local operators. The pair can be created by a string operator $W_{\xi_2 \xi_3} = \prod_{i=\xi_2}^{\xi_3} \sigma_i^x$.

 ξ_1 ξ_2 ξ_3

- The topological topological excitations are **fractionalized** local excitations: a spin-flip can be viewed as a bound state of two wall α excitations spin-flip = wall \otimes wall. α in α
- Energy cost of spin-flip $\Delta_{\text{flip}} = 4J$ Energy cost of domain wall $\Delta_{wall} = 2J$.
- The many-body spectrum gap on a ring $\Delta = \Delta_{\text{flip}} = 2\Delta_{\text{wall}}$. This gap can be measured by neutron scattering.

• The thermal activation gap measured by specific heat $c \sim T^{\alpha} e^{-\frac{\Delta_{\text{therm}}}{k_B T}}$ is $\Delta_{\text{therm}} = \Delta_{\text{wall}}$.

The difference of the neutron gap Δ and the thermal activation gap $\Delta_{\text{therm}} \rightarrow$ fractionalization.

Another example: 1D spin-dimmer state

Consider a $SO(3)$ spin rotation symmetric Hamiltonian H_0 whose ground states are spin-dimmer state formed by spin-singlets, which break the translation symmetry but not spin rotation symmetry:

> (↑↓)(↑↓)(↑↓)(↑↓)(↑↓)(↑↓)(↑↓)(↑↓) ↓)(↑↓)(↑↓)(↑↓)(↑↓)(↑↓)(↑↓)(↑↓)(↑

• Local excitation $=$ spin-1 excitation

(↑↓)(↑↓)(↑↓)↑↑(↑↓)(↑↓)(↑↓)(↑↓)

• Topo. excitation (domain wall) = spin- $1/2$ excitation (spinon) (↑↓)(↑↓)↑(↑↓)(↑↓)(↑↓)↑(↑↓)(↑↓)

• Neutron scattering only creates the spin-1 excitation $=$ two spinons. It measures the two-spinon gap (spin-1 gap). Thermal activation sees single spinon gap.

Neutron scattering spectrum

2D Spin liquid without symmetry breaking (topo. order)

The spin-1 fractionalization into spin-1/2 spinon can happen in 2D spin liquid without translation and $SO(3)$ spin-rotation symmetry breaking:

chiral spin liquid $\sum \Psi(RVB)|RVB\rangle \rightarrow$ topological order Kalmeyer-Laughlin PRL 59 2095 (87); Wen-Wilczek-Zee PRB 39 11413 (89) Z_2 spin liquid \sum $|RVB\rangle$ (emergent low energy Z_2 gauge theory) Read-Sachdev PRL 66 1773 (91); Wen PRB 44 2664 (91) Z_2 -charge (spin-1/2) = Spinon. Z_2 -vortex (spin-0) = Vison. Bound state $=$ fermion (spin-1/2).

2D Spin liquid without symmetry breaking (topo. order)

- On Kagome lattice: Feng etal arXiv:1702.01658 $Cu₃Zn(OH)₆FBr$

Neutral spin-1/2 or spin-1 excitations

Consider a 2D Mott insulator of electrons where the electron spins form a 2D gapped spin liquid state, that do not break the $SO(3)$ spin rotation symmetry. The gapped excitations may be spin- $1/2$ excitations or spin-1 excitations. In an external magnetic field B an excitation has the following dispersion relation

$$
\epsilon_{\sigma}(k) = \Delta + \frac{\hbar^2 k^2}{2m} + g\mu_B B\sigma
$$

where $\sigma=\pm\frac{1}{2}$ $\frac{1}{2}$ if the excitation has spin-1/2, and $\sigma=0,\pm1$ if the excitation has spin-1. (Note that $g\mu_B\sigma$, $\sigma=\pm\frac{1}{2}$ $\frac{1}{2}$, is magnetric moment of spin up/down electrons.) Find the low temperature spin polarization $\sum \sigma/A$ rea per unit area as a function of magnetic field \overline{B} and temperature for spin-1/2 and spin-1 cases. Comment on how to use those results to detect experimentally if the excitations has spin-1/2 or spin-1. (See arXiv:1702.01658 Gapped spin-1/2 spinon excitations in a new kagome quantum spin liquid compound $Cu₃Zn(OH)₆FBr.$)

We note that the spin excitations are always charge neutral. For an electron system, a charge neutral excitation naively should have integer spins. So a charge neutral spin-1/2 excitation is highly unusual and corresponds to a topological excitation. The appearance of charge neutral spin-1/2 excitation implies that the 2D spin liquid has a topological order. However, in 1D, a spin dimmer phase can have such a kind of charge neutral spin-1/2 topological excitation:

(↑↓)(↑↓)(↑↓) ↑ (↑↓)(↑↓)(↑↓)(↑↓)(↑↓)(↑↓)(↑↓) ↓ (↑↓)(↑↓)

where $(\uparrow\downarrow)$ represent a spin singlet (a dimmer).

Some problems about 1D Ising model

• Compute the energy spectra (say of lowest 10 eigenstates) for the transverse Ising model on a ring of size $L = 10$ (or bigger):

$$
H = -\sum_{i=1}^{L} (J\sigma_i^x \sigma_{i+1}^x + h\sigma_i^z)
$$

for $J=1$ and $h=\frac{1}{2}$ $\frac{1}{2}$, 1, 2. We can use such numerical results for different L 's to study the following two questions.

• For $J=1, h=\frac{1}{2}$ $\frac{1}{2}$, show that the emergence of near 2-fold degeneracy become better and better as $L \rightarrow \infty$. Such an emergence of degeneracy for space with spherical topology \mathcal{S}^d is a sign of spontaneous symmetry breaking (this can be used as a definition of spontaneous symmetry breaking). Show the splitting of the 2-fold degeneracy to have a form (in large *limit)*

 $\Delta \sim {\rm e}^{-L^\alpha/\xi}$

and find the values of α and ξ .

Some problems about 1D Ising model

• At the critical point $J = 1$, $h = 1$, show the splitting between the two lowest eigenstates to have a form (in large L limit)

$\Delta = A_{-1}/L.$

• Show that the ground states (or more precisely the Hamiltonians) for $J = 1$, $h = 2$ and for $J = 1$, $h = -2$ belong to different phases, despite both states do not break the Z_2 symmetry and the translation symmetry (ie they have have the same symmetry). In other words, the two Hamiltonians with $J = 1$, $h = 2$ and for $J = 1$, $h = -2$ cannot be deformed into each other without encounter a phase transition, if the deformation path does not break the Z_2 symmetry and the translation symmetry. On the other hand, if the deformation path does break the Z_2 symmetry or the translation symmetry, then the two Hamiltonians with $J = 1$, $h = 2$ and for $J = 1$, $h = -2$ can be deformed into each other without encounter a phase transition.

(Hint: consider the $h \to \pm \infty$ limit and compute the total Z_2 quantum number for the Z_2 transformation

> $U = \prod$ i σ_i^z

for $L =$ even and odd cases. Note that the eigenvalues of U are ± 1 . The total Z_2 quantum number is the eigenvalues of U. If $U|\psi\rangle = |\psi\rangle$, we say $|\psi\rangle$ has a total Z_2 quantum number $+1$ (or 0 mod 2). If $U|\psi\rangle = -|\psi\rangle$, we say $|\psi\rangle$ has a total Z_2 quantum number -1 (or 1 mod 2). Does U commute with H ? Does such Z_2 quantum number change as we make $|h|$ smaller and smaller?)