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What is a many-body quantum system?

• A many-body quantum system
= Hilbert space Vtot + Hamiltonian H

- The locality of the Hilbert space:
Vtot = ⊗N

i=1Vi
- The i also label the vertices of a graph

0

1

• A quantum state, a vector in Vtot :
|Ψ〉 =

∑
Ψ(m1, ...,mN)|m1〉 ⊗ ...⊗ |mN〉,

basis of Vi : |mi 〉 ∈ Vi
• A local Hamiltonian H =

∑
x
Hx and Hx are local hermitian

operators acting on a few neighboring Vi ’s.
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What is a many-body Hamiltonian

• Consider a system formed by two spin-1/2 spins. The spin-spin
interaction: H = J(σx1σ

x
2 + σy1σ

y
2 + σz1σ

z
2).

where σx ,y ,zi are the Pauli matrices acting on the i th spin.
J < 0 → ferromagnetic, J > 0 → antiferromagnetic.
Is H a two-by-two matrix? In fact
H = −J[(σx ⊗ I ) · (I ⊗ σx) + (σy ⊗ I ) · (I ⊗ σy ) + (σz ⊗ I ) · (I ⊗ σz)]
H is a four-by-four matrix:

σz
1σ

z
2 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 σx
1σ

x
2 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 σx
1σ

z
2 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0


• σzi = I ⊗ · · · ⊗ I ⊗ σz ⊗ I ⊗ · · · ⊗ I is a 2Nsite-dimensional matrix

Example: An 1D ring formed by L spin-1/2 spins:

H = −
L∑

i=1

σxi σ
x
i+1 − h

L∑
i=1

σzi

– transverse Ising model. H is a 2L × 2L matrix.
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Many-body spectrum using Octave (Matlab or Julia)
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Transverse Ising model on a ring of L site:

H = −J
L∑

i=1

σxi σ
x
i+1 − h

L∑
i=1

σzi

.H is an 2L-by-2L matrix, whose
eigenvalues can be computed via the
following Octave code
(similar code for Matlab or Julia)

X=sparse([0,1;1,0]); Z=sparse([1,0;0,-1]);
XX=kron(X,X); L=13; h=1.0; J=1.0
H=-kron(kron(X, speye(2̂ (L-2)) ),X);
for i=1:L-1
H=H - kron( speye(2̂ (i-1)), kron(J*XX, speye(2̂ (L-1-i)))) ;

end Why near 2-fold
for i=1:L degeneratcy?
H=H - kron( speye(2̂ (i-1)), kron(h*Z, speye(2̂ (L-i)))) ;

end
eigs( H , 10, ’sa’) # compute the lowest 10 eigenvalues

The 100 lowest eigenvalues for L = 16, as functions of h/J ∈ [0, 2].
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What are quantum phases and quantum phase transitions?

• Phases are defined through phase transitions.

What are phase transitions?

As we change a parameter g in Hamilto-
nian H(g), the ground state energy den-
sity εg = Eg/V or the average of a local
operator 〈Ô〉 may have a singularity at gc :
the system has a phase transition at gc .
The Hamiltonian H(g) is a smooth func-
tion of g . How can the ground state en-
ergy density εg be singular at a certain
gc?

A

C

g
1

g
2

B

E2 − E1 of trans. Ising
for L = 3, · · · , 13
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• There is no singularity for finite systems.
Singularity appears only for infinite systems.

• Spontaneous symmetry breaking is a mechanism to cause a
singularity in ground state energy density εg .
→ Spontaneous symmetry breaking causes phase transition.
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Symmetry breaking theory of phase transition

It is easier to see a phase transition in the semi classical
approximation of a quantum theory.

• Variational ground state |Ψφ〉 for Hg is obtained by minimizing

energy εg (φ) =
〈Ψφ|Hg |Ψφ〉

V against the variational parameter φ.
εg (φ) is a smooth function of φ and g . How can its minimal value
εg ≡ εg (φmin) have singularity as a function of g?

• Minimum splitting → singularity in
∂2εg
∂g2 at gc . Second order trans.

State-B has less symmetry than state-A.
State-A → State-B: spontaneous symmetry breaking.

- For a long time, we believe that
phase transition = change of symmetry
the different phases = different symmetry.

cg>g cg<g cg<g cg>gcg=g

ε

ϕ

ε

ϕ

ε

ϕ

ε

ϕ

ε

ϕ

• Minimum switching → singularity in
∂εg
∂g at gc . First order trans.
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Example: meanfield symmetry breaking transition

Consider a transverse field Ising model H =
∑

i −Jσxi σxi+1 − hσzi
Use trial wave function |Ψφ〉 = ⊗i |ψi 〉, |ψi 〉 = cos φ2 | ↑〉+ sin φ

2 | ↓〉
to estimate the ground state energy
εh(φ) = 〈Ψφ|H|Ψφ〉 = −

∑
〈ψi |σxi |ψi 〉〈ψi+1|σxi+1|ψi+1〉 − h

∑
〈ψi |σzi |ψi 〉.

= (2J cos φ2 sin φ
2 )2 − h(cos2 φ

2 − sin2 φ
2 ) = sin2 φ− h cosφ

Phase transition at h/J = 2. (h/J = 1.5, 2.0, 2.5)

• Why εh(φ) = εh(−φ)? Z2-Symmetry: U =
∏

j σ
z
j , U2 = 1.

Symmetry trans.: Uσzi U
† = σzi , Uσxi U

† = −σxi , Uσyi U
† = −σyi .

→ UHU† = H. If H|ψ〉 = Egrnd|ψ〉, then UH|ψ〉 = EgrndU|ψ〉 →
UHU†U|ψ〉 = EgrndU|ψ〉 → HU|ψ〉 = EgrndU|ψ〉
Both |ψ〉 and U|ψ〉 are ground states of H:
Either |ψ〉 ∝ U|ψ〉 (symmetric) or |ψ〉 6∝ U|ψ〉 (symm.-breaking).
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Ginzberg-Landau theory of continuous phase transition

• Trial wave function |Ψφ〉 =
⊗

i (cos φ2 | ↑〉i + sin φ
2 | ↓〉i ):

U|Ψφ〉 = |Ψ−φ〉 →
〈Ψφ|H|Ψφ〉 = 〈Ψφ|U†UHU†U|Ψφ〉 = 〈Ψ−φ|H|Ψ−φ〉 →
ε(h, φ) = ε(h,−φ)

• If |Ψφ=0〉 is the ground state → symmetric phase.
If |Ψφ 6=0〉 is the ground state → symmetry breaking phase.

Order parameter and symmetry-breaking phase transition
φ or σxi are order parameters for the Z2 symm.-breaking transition:

- Under Z2 (180◦ Sz rotation), φ→ −φ or σxi → −σxi
- In symmetry breaking phase φ = ±φ0, 〈σxi 〉 = ±.

In symmetric phase φ = 0, 〈σxi 〉 = 0. (Classical picture)
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Quantum picture of continuous phase transition

No symmetry breaking in quantum theory according to a theorem:
If [H,U] = 0, then H and U share a commom set of eigenstates.

In particular, the ground state |Ψgrnd〉 of H, is an eigenstate of U:
U|Ψgrnd〉 = e iθ|Ψgrnd〉. No symmetry breaking.

In our above discussion based on semi classical approximation,
|Ψφ〉 and |Ψ−φ〉 are not degenerate ground states. The true ground
state is |Ψgrnd〉 = |Ψφ〉+ |Ψ−φ〉 which do not break the symmetry.

- Quantum picture: Symmetry-breaking phase has
〈Ψgrnd|σxi |Ψgrnd〉 = 0 for the true ground state. But the ground
states are nearly degenerate: |Ψgrnd〉 = |Ψφ〉+ |Ψ−φ〉 and
|Ψ′grnd〉 = |Ψφ〉 − |Ψ−φ〉 has an exponentially small energy

separation ∆ ∼ e−L/ξ.

• Discrete-symmetry-breaking phase has exponentially nearly
degenerate ground states, which cannot be distingushed by any
symmetric local operators, but can be distingushed by
symmetry-breaking local operators
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Excitations above the ground state: quasiparticles

The answer is very different for gapped system and gapless
systems. Here, we only consider the definition of quasiparticle for
gapped systems.

Consider a many-body system H0 =
∑

x Hx , with ground state
|Ψgrnd〉.
• a point-like excitation above the ground state is a many-body wave

function |Ψξ〉 that has an energy bump at location ξ:
energy density = 〈Ψξ|Hx |Ψξ〉

ground state
excitation

engergy density
engergy density  

ξ

More precisely, point-like excitations at locations ξi are something
that can be trapped by local
traps δHξi : |Ψξi 〉 is the gapped
ground state of H0 +

∑
i δHξi

– the Hamiltonian with traps.
ε −> 0

∆

subspace
ground−state −>finite gap  
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Local and topological excitations

Consider a many-body state |Ψξ1,ξ2,···〉 with several point-like
excitations at locations ξi .

Can the first point-like excitation at ξ1 be created by a local
operator Oξ1 from the ground state: |Ψξ1,ξ2,···〉 = Oξ1 |Ψξ2,···〉?
|Ψξ1,ξ2,···〉 = the ground state of H0 + δHξ1 + δHξ1 + · · ·
|Ψξ2,···〉 = the ground state of H0 + δHξ1 + · · ·

If yes: the point-like excitation at ξ1 is a local excitation
If no: the point-like excitation at ξ1 is a topological excitation

Example: Consider an 1D Ising model H0 = −J
∑

i σ
z
i σ

z
i+1 with

- one of the degenerate ground states |Ψ0〉 = | ↑↑↑↑↑↑↑↑↑↑↑↑〉
- a state w/ three point-like excitations |Ψξ1ξ2ξ3〉 = | ↑↑↓↑↑↑↓↓↓↑↑↑〉

ξ1 ξ2 ξ3- The point-like excitation at ξ1 is a spin flip
created by σxξ1

– a local excitation.
- The point-like excitations at ξ2, ξ3 are topological excitations that

cannot be created by any local operators.
The pair can be created by a string operator Wξ2ξ3 =

∏ξ3

i=ξ2
σxi .
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Local and topological excitations
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∑
i σ

z
i σ

z
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- one of the degenerate ground states |Ψ0〉 = | ↑↑↑↑↑↑↑↑↑↑↑↑〉
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Experimental consequence of topological excitations

• The topological topological excitations are fractionalized local
excitations: a spin-flip can be viewed as a bound state of two wall
excitations spin-flip = wall⊗ wall. | ↑↑↑↓↑↑↑↑↑↓↓↓↓↓↑↑↑↑〉
• Energy cost of spin-flip ∆flip = 4J

Energy cost of domain wall ∆wall = 2J.

• The many-body spectrum gap on a ring
∆ = ∆flip = 2∆wall. This gap can be
measured by neutron scattering.

ε −> 0

∆

subspace
ground−state −>finite gap  

• The thermal activation gap measured by specific heat

c ∼ Tα e
−∆therm

kBT is ∆therm = ∆wall.

The difference of the neutron gap ∆ and the thermal
activation gap ∆therm → fractionalization.
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Another example: 1D spin-dimmer state

Consider a SO(3) spin rotation symmetric Hamiltonian H0 whose
ground states are spin-dimmer state formed by spin-singlets, which
break the translation symmetry but not spin rotation symmetry:

(↑↓)(↑↓)(↑↓)(↑↓)(↑↓)(↑↓)(↑↓)(↑↓)
↓)(↑↓)(↑↓)(↑↓)(↑↓)(↑↓)(↑↓)(↑↓)(↑

• Local excitation = spin-1 excitation

(↑↓)(↑↓)(↑↓)↑↑(↑↓)(↑↓)(↑↓)(↑↓)

• Topo. excitation (domain wall) = spin-1/2 excitation (spinon)

(↑↓)(↑↓)↑(↑↓)(↑↓)(↑↓)↑(↑↓)(↑↓)

• Neutron scattering only creates the spin-1 excitation = two
spinons. It measures the two-spinon gap (spin-1 gap).
Thermal activation sees single spinon gap.
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Neutron scattering spectrum
Neutron dump energy-
momentum into the sample
creating a few excitations.

- Without fractionalization, nor trans. symm. breaking
εspin-1(k) = 2.6 + 2 cos(k)

- With fractionalization and trans. sym. breaking
εspin-1/2(k) = 1

2ε(2k)spin-1

one spin-1 + two spin-1 two spin-1/2 + four spin-1/2

0
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k

0
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k
• Two-particle spectrum: εtwo(k) = εone(k1) + εone(k − k1).
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2D Spin liquid without symmetry breaking (topo. order)

The spin-1 fractionalization into spin-1/2 spinon can happen in 2D
spin liquid without translation and SO(3) spin-rotation symmetry
breaking:

- On square lattice:
chiral spin liquid

∑
Ψ(RVB)|RVB〉 → topological order

Kalmeyer-Laughlin PRL 59 2095 (87); Wen-Wilczek-Zee PRB 39 11413 (89)

Z2 spin liquid
∑
|RVB〉 (emergent low energy Z2 gauge theory)

Read-Sachdev PRL 66 1773 (91); Wen PRB 44 2664 (91)

Z2-charge (spin-1/2) = Spinon. Z2-vortex (spin-0) = Vison.
Bound state = fermion (spin-1/2).
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2D Spin liquid without symmetry breaking (topo. order)

- On Kagome lattice: Feng etal arXiv:1702.01658 Cu3Zn(OH)6FBr

Gong-Zhu-Balents-Sheng arXiv:1412.1571

J1-J2-J3 model

Xiao-Gang Wen Quantum many-body systems: Symmetry breaking



Neutral spin-1/2 or spin-1 excitations

Consider a 2D Mott insulator of electrons where the electron spins
form a 2D gapped spin liquid state, that do not break the SO(3)
spin rotation symmetry. The gapped excitations may be spin-1/2
excitations or spin-1 excitations. In an external magnetic field B an
excitation has the following dispersion relation

εσ(k) = ∆ +
~2k2

2m
+ gµBBσ

where σ = ±1
2 if the excitation has spin-1/2, and σ = 0,±1 if the

excitation has spin-1. (Note that gµBσ, σ = ±1
2 , is magnetric

moment of spin up/down electrons.) Find the low temperature
spin polarization

∑
σ/Area per unit area as a function of magnetic

field B and temperature for spin-1/2 and spin-1 cases. Comment
on how to use those results to detect experimentally if the
excitations has spin-1/2 or spin-1. (See arXiv:1702.01658 Gapped
spin-1/2 spinon excitations in a new kagome quantum spin liquid
compound Cu3Zn(OH)6FBr.)
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Neutral spin-1/2 or spin-1 excitations

We note that the spin excitations are always charge neutral. For an
electron system, a charge neutral excitation naively should have
integer spins. So a charge neutral spin-1/2 excitation is highly
unusual and corresponds to a topological excitation. The
appearance of charge neutral spin-1/2 excitation implies that the
2D spin liquid has a topological order. However, in 1D, a spin
dimmer phase can have such a kind of charge neutral spin-1/2
topological excitation:

(↑↓)(↑↓)(↑↓) ↑ (↑↓)(↑↓)(↑↓)(↑↓)(↑↓)(↑↓)(↑↓) ↓ (↑↓)(↑↓)

where (↑↓) represent a spin singlet (a dimmer).
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Some problems about 1D Ising model

• Compute the energy spectra (say of lowest 10 eigenstates) for the
transverse Ising model on a ring of size L = 10 (or bigger):

H = −
L∑

i=1

(Jσxi σ
x
i+1 + hσzi )

for J = 1 and h = 1
2 , 1, 2. We can use such numerical results for

different L’s to study the following two questions.

• For J = 1, h = 1
2 , show that the emergence of near 2-fold

degeneracy become better and better as L→∞. Such an
emergence of degeneracy for space with spherical topology Sd is a
sign of spontaneous symmetry breaking (this can be used as a
definition of spontaneous symmetry breaking). Show the splitting
of the 2-fold degeneracy to have a form (in large L limit)

∆ ∼ e−L
α/ξ

and find the values of α and ξ.
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Some problems about 1D Ising model

• At the critical point J = 1, h = 1, show the splitting between the
two lowest eigenstates to have a form (in large L limit)

∆ = A−1/L.

• Show that the ground states (or more precisely the Hamiltonians)
for J = 1, h = 2 and for J = 1, h = −2 belong to different phases,
despite both states do not break the Z2 symmetry and the
translation symmetry (ie they have have the same symmetry). In
other words, the two Hamiltonians with J = 1, h = 2 and for
J = 1, h = −2 cannot be deformed into each other without
encounter a phase transition, if the deformation path does not
break the Z2 symmetry and the translation symmetry.

On the other hand, if the deformation path does break the Z2

symmetry or the translation symmetry, then the two Hamiltonians
with J = 1, h = 2 and for J = 1, h = −2 can be deformed into
each other without encounter a phase transition.
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Some problems about 1D Ising model

(Hint: consider the h→ ±∞ limit and compute the total Z2

quantum number for the Z2 transformation

U =
∏
i

σzi

for L = even and odd cases. Note that the eigenvalues of U are
±1. The total Z2 quantum number is the eigenvalues of U. If
U|ψ〉 = |ψ〉, we say |ψ〉 has a total Z2 quantum number +1 (or 0
mod 2). If U|ψ〉 = −|ψ〉, we say |ψ〉 has a total Z2 quantum
number −1 (or 1 mod 2). Does U commute with H? Does such
Z2 quantum number change as we make |h| smaller and smaller?)
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