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The search for new elements led to a golden age of chemistry.

The search for new particles led to the golden age of particle physics.

Now ina of condensed matter physics, we ask:
what are the possible fundamental states of matter?

(Known in
early 20t
century)

Crystal: Broken Magnet: Broken Superconductor: Broken
translational symmetry rotational symmetry gauge symmetry



Landau-Ginzburg-Wilson Paradigm (CMT)

* Classical Phase Transitions:
v Associated with symmetry breaking
v Characterized by local order parameter(s)
v’ Disorder-Order Transition driven by thermal fluctuations
Examples: superfluids, ferromagnetism, superconductivity

* Landau-Fermi Liquid Theory:
v" Quasi-particles are fermions (existence of Fermi surface)
v" Quasiparticles have same charge and spin (quantum numbers) as electrons
v’ Electron interactions incorporated in energy as
functional of quasiparticle occupation number
(quasiparticle energy and Landau parameters)
Examples: Helium 3, many metals etc

« Common Feature: Can be understood by Renormalization Group Flow Fixed
Points (Wilson & Shankar)



Topological Order: Beyond the Landau Paradigm

* Novel phases at T=0 due to quantum effects (quantum matter)
* No symmetry breaking, no local order parameter(s)

* Characterized by a topological number

* Robust against weak disorders and interactions

* Correspondence between bulk and edge (in 2d) /surface (in 3d)
* Topology-dependent ground state degeneracy

* Fractionalization of quantum numbers (of quasiparticles)

* Fractional (exchange and exclusion) statistics of quasiparticles
* Intricate interplay between symmetries and topological orders

* Examples: quantum Hall effect, Mott insulators, quantum spin Hall effect, _
quantum spin liquids,topological insulators/superconductors, Dirac/Weyl semi-
metals, connection w/ fundamental Physics etc



Respondence to Professor Wen's Classes

* Class 1: Symmetry Breaking in T=0 Quantum Phase Transition
(with the example of the 1d Transverse Ising Model)

* Class 2: Topological Order (beyond Landau’s paradigm)
(in the context of String-Net Models)
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Surface of Orange, Mug and Pretzel




Surface of Orange, Mug and Pretzel

Topology: Properties unchanged under continuous deformations



Surface of Orange, Mug and Pretzel

How to describe and characterize topological differences
between these three things?



Konigsberg Seven Bridge Problem

CE ] R o 8

[source: MacTutor History of Mathematics Archive]

Problem:

Is it possible for a walker
to go through all several
bridges only once and to
return to the starting
position?



Euler’s Solution of the Seven Bridge Problem
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* The Seven bridges of Konigsberg
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vertex is connected to an
odd number of links. Credit: Aiden Ball



Euler Characteristics for Polyhedra

I Vertices I Edges I Faces I Euler characteristic:
¥ iy o V-— F+ F

Tetrahedron ‘ 4 5] 4 2

Oetahedron ‘ ] 12 3 2
Dodecahedron . 20 20 12 2
Icosahedron ‘ 12 20 20 2

(Credit: Wikipedia)

Name Image

X(M) = V-E+F (M: 2d closed surface)
Actually true for any Convex/Spherical polyhedra!



Gauss-Bonnet Theorem

% /M KdA = (M) = 2(1 - g).

where M: 2d closed surface

K: Gauss Curvature, g: genus (# handles)

S ¥
g=3




ideas inspired by this Line of Thoughts

* Discrete approach can be Exact for Topology of a Continuous Object
(Combinatoric Topology)

* Bulk-Boundary Relationship plays a Central role in Topology
(Homology)
* Topological Inumbrer/nvariant can be expressed as an Integral
(Differential Topology: Cohomology and Homotopy)

=== |ntegral Calculus is Important in Curved Manifold without Metric
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A Primer of Topology for Physicists

Manifold and Differential Forms
Stokes Theorem
Mapping Degree/Winding Numbers
Kronecker Invariant, WZW Action
Topology in Gauge Theory
Aharonov-Bohm Effect and Flux Quantum
Dirac Quantization for Magnetic Monopole
Instantons and Theta Vacuum
Index Theorem for Zero Modes and Anomaly
Descent Equations:
Relations in Different Dimensions



Topology

Definition:Properties that remain unchanged under continuous (or
smooth) deformation.
1. Combinatoric Topology: Pure Math
2. Algebraic Topology:

(1)Homotopy group, (2)Homology group, (3)Cohomology group
3. Differential Topology:

Differential forms = Integral topological invariants = Topological
number

In physics we need to get a number to be compared with experiments,
VM

so topological numbers obtained by integral invariants are very useful

In physu:s though not every topological number can n be expressed as

an integral.




Integration over a smooth manifold

Manifolds are generalization of curves, surfaces, hyper-surfaces, etc.
A manifold (with dimension n) is defined by the following data:
1. Local coordinates patches (with n coordinates in each patch)

Fig: local coordinates for a 2-sphere

2. In overlapping region(s), the coordinate transformations

't =Ft(xl, o, « %), (p=1,2,,n)

must be smooth.
3. Collection of all admissible coordinates patches that covers the

whole manifold, a differential structure).
Here, properties 2 and 3 contain global information.



Integration elements

In R3, we have the following integrations.

(1) Line integral [ A-dX

(2) Surface integral [ E.d&

(3) Volume integral [, f(X)dT

In higher dimensions, the surface and volume elements are not vector
and scalar but anti-symmetric tensors.

doa — do™ = dx" A dx¥
dr —  dTH = dx* A dx¥ A dx?

Here, for example, an volume element formed by three infinitesimal
non-planar vectors du, (a = 1,2, 3) is understood as

dxt A dx? A dx® — €2P(Su)  (Sup)¥ (duc) . (1)



Differential forms as " integrands”

The differential k-form (of degree k) is

1
W= =Wy dXFE NN dXEE

k!
where w,,; .. 4, and dx** A ... A\ dxHk are totally anti-symmetric,
respectively. We have following properties:
(1) dx* A dx¥ = —dx” N dx*. More generally,
w1 N\ wy = (_1)deg(w1)-deg(w2)w2 N\ W1 .

(2) Define: dw = 4 228t it A .. A dixih.
Namely we have d = %dx“/\.
(3) d? = 0 (Most important property)

(4) Leibniz Rule: d(w; A ws) = (dwi) Aws + (—1)%8w1w; A (dws)
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Differential Forms (cont.)

(5) Givenamap f : M — N, (x* +— y*), then for a k-form w on N we
obtain a form

#* 1 ¥ [}
ffw = GWar..a (V(Xx))dy™ (x) AL A y™H(x)
1 Dy Dy

dxt A .. I\ b

— Eﬂrﬂﬂgl,...ﬂh (y(x)) E}xlﬂ-l o a}f“k

defined on M. This operation is called Pull-Back.
(6) Stoke's Theorem describes the Bulk-Boundary Relation:

fdw:/ w
Vv aV

Corollary: If w is a closed form, i.e. dw = 0, then fsw is unchanged
under smooth deformation of the compact manifold S. (A compact
manifold has no boundary.)

Therefore, a closed form is always associated with an integral
topological invariant. Useful topological integral invariants include

mapping degrees, or winding numbers, and Chern numbers.



Stokes” Theorem in 3 dimensions

For O-form f(@) = f(z,y, 2), then 1-form df = gg{i dx’
For 1-form A = A;(Z)dz*, we have two possible derivations

Curl (2-form) : dA = %%ﬁf dx* Adx? , (dA)i; = €k (V X A

Dual (2-form): , 4 — LesinApdat A dad,
Divergence (0-form): , , _ 0 A

%eijk)dml A dxt A dx?
#(d* A) = €eiji(d* A)ju =V - A

Stokes Theorem unifies the usual Green’s, Stokes’s and Gausss’s
Theorems:



Mapping Degree
e:M—=N (dm(M)=dm(N), M.N are compact and oriented)

Intuition: The image of (M) must cover N an integer times.
Consider ¢ : ST — S?

Fig: Map S! — S1

(1) — 06 =6 (0 < 6 < 2m), it covers 1 time.
(2).0 — 6' = 28 (0 < 8 < 2m), it covers 2 time.
(3).60 — 6/ = 0 0<6<m)

= 218 (w6 < 27)
it covers O times.
The (integer) number of times that f(M) covers N can be expressed
bv an integral mathematicallv.



Mapping degree (cont.)

Mapping degree or winding number:

des () — 2

v

where w is n-form on N (Volume form).

Example 1. Kronecker Integral: N = 5"
w:M—S" (5" is unit sphere (3271 (y*)2 =1).)
So we have Zg+1{c,;v“(x))2 =1 (unit vector in R"+1)
Take w = to be the volume element

Fp2(x) Opr+i(x)

deg(&; - /dn _HHL"”nft:f1-..4:rn+1":'3ﬂ1(x}

Oxkr T Oxba

. [n—|—1]‘rT
with V, = L (n+3)]



Properties of Mapping Degree

We have the following properties:
Homotopy Invariant: deg(y) is homotopic invariant.
Definition: We say 1 ~ 2 if exists smooth F:M x [ — N, such that

Fis,r=0) =wilx), Flea=1Yy=—=1wslx)

(F represents the process in which 7 is deformed to 2)

p1 ~ pa = deg(p1) = deg(yp2)

Note. The converse is NOT true generally, but true in Kronecker's
case. We have Hopf Theorem. Suppose M is connected, compacted
and oriented. For maps 1, 02:M — S", (dim(M) = n). We have

p1 ~ Y2 & deg(p1) = deg(y2)



Homotopy Integral Invariant (cont.)

Example 2: The case when N = G (Lie Group)
Here dim(M)z£dim(/N) is allowed.
Consider amap g: M — G, (x — g(x).g(x) € G). The form

Tr{[g ™" (x)dg(x)]“}

is the pull-back on M of [g1dg]* on G. Here g~ 1dg is the
Cartan-Maurer 1-form on G:

g 'dg =Y T?V3i(g)dg"
a—1

Where r = dim(G) and g% are coordinates on G. So the pull-back is
given by

g (x)dg(x) =D T*V2(g(x))dx*
a—1

where ﬂl;’j = Vj(g(x)]agﬂ

OxH -




Homotopy Integral Invariant (cont.)

Let us define

wlg(x)] = ck [y, Trilg=1(x)de(x)]*}.

Lemma. Tr(gldg)* =0, if k = even;
dTr(g ldg)* =0, if k = odd.

I =
When M is a k-sphere, SX with k = odd, ¢, = (T;]!

=
(2r) 7 kI

Theorem. w(g(x)] = integer.
Application: In gauge theories, a map g : M — G is called a gauge
transformation and w(g), if non-zero, is called the winding number of
the large gauge transformation f .
Example 3: M = S3. N = SU(2). In this case, w(g) can be
calculated by either of the above formulas.
Let us define (g1 0 g2)(x) = g1(x) - g2(x). Then we have the following
property:

w(g1 o g) = w(g1) + w(g).

Tr((g1g2) 'd(g182)]° = Trl(g1 'dg1)*+ Trl(g; ' dg2)’]+d(something).



1.

Reference Books

H. Flanders, “Differential Forms with Applications to the Physical Sciences”
(Dover Publications, 1989)

C. Nash and S. Sen, “Topology and Geometry for Physicists”, (Academic Press,
Inc., London, 1983)

These are suitable for this class. For advanced textbooks see, e.g.,

Y. Choquet-Bruhat, C. Dewitt-Morette and M. Dillard-Bleick, “Anaysis, Manifolds
and Physics” , Revised Edition, (North-Holland, Amsterdam, 1982)

T. Frankel, “The Geometry of Physics -- An Introduction”, (Cambridge University
Press, 1997)



Problems

1. Given a = 2yzdx + xQdy + Xyzdz, B = sinxdx + cosydy,
compute (1) aAB, and (2) da.

2. Given a and B as given above, explicitly compute (3) d(da) and (4) d(aAB).
3. If furthery = 3z3dx+(at2 + y? + ZQ)dy+5y2 dz, compute aABAy =7
4. Consider a 2-sphere S? describedby 22 +9y?2 +22=1.

Show that its surface element is given by B = xdyAdz + ydzAdx + zdxAdy.

Hint: Use the polar coordinates: x =sinBcos®, y = sinBsing, z = cosb.
prove that B =sinB8dOAdd, dp = 3dxAdyAdz.






