Lecture 3

Brief Review of Topology and Geometry I -- Topological Numbers \& Differential Forms

Yong-Shi Wu
University of Utah

(March 13, 2020)

Prologue:
Paradigms in Condensed Matter Physics

The Search for New States/Phases of Matter

The search for new elements led to a golden age of chemistry.
The search for new particles led to the golden age of particle physics.
Now in a of condensed matter physics, we ask: what are the possible fundamental states of matter?

(Known in

 early $20^{\text {th }}$ century)

Crystal: Broken translational symmetry

Magnet: Broken rotational symmetry

Superconductor: Broken gauge symmetry

Landau-Ginzburg-Wilson Paradigm (CMT)

- Classical Phase Transitions:
\checkmark Associated with symmetry breaking
\checkmark Characterized by local order parameter(s)
\checkmark Disorder-Order Transition driven by thermal fluctuations Examples: superfluids, ferromagnetism, superconductivity
- Landau-Fermi Liquid Theory:
\checkmark Quasi-particles are fermions (existence of Fermi surface)
\checkmark Quasiparticles have same charge and spin (quantum numbers) as electrons
\checkmark Electron interactions incorporated in energy as
functional of quasiparticle occupation number
(quasiparticle energy and Landau parameters)
Examples: Helium 3, many metals etc
- Common Feature: Can be understood by Renormalization Group Flow Fixed Points (Wilson \& Shankar)

Topological Order: Beyond the Landau Paradigm

- Novel phases at $\mathrm{T}=0$ due to quantum effects (quantum matter)
- No symmetry breaking, no local order parameter(s)
- Characterized by a topological number
- Robust against weak disorders and interactions
- Correspondence between bulk and edge (in 2d) /surface (in 3d)
- Topology-dependent ground state degeneracy
- Fractionalization of quantum numbers (of quasiparticles)
- Fractional (exchange and exclusion) statistics of quasiparticles
- Intricate interplay between symmetries and topological orders
- Examples: quantum Hall effect, Mott insulators, quantum spin Hall effect, quantum spin liquids,topological insulators/superconductors, Dirac/Weyl semimetals, connection w/ fundamental Physics etc

Respondence to Professor Wen’s Classes

- Class 1: Symmetry Breaking in T=0 Quantum Phase Transition (with the example of the 1d Transverse Ising Model)
- Class 2: Topological Order (beyond Landau's paradigm) (in the context of String-Net Models)

A Primer of Topology

Surface of Orange, Mug and Pretzel

Surface of Orange, Mug and Pretzel

Topology: Properties unchanged under continuous deformations

Surface of Orange, Mug and Pretzel

How to describe and characterize topological differences between these three things?

Königsberg Seven Bridge Problem

Problem:
Is it possible for a walker to go through all several bridges only once and to return to the starting position?
[source: MacTutor History of Mathematics Archive]

Euler's Solution of the Seven Bridge Problem

Swistzland Stamp (2207)
Impossible! Because each vertex is connected to an odd number of links.

- The Seven bridges of Königsberg

Credit: Aiden Ball

Euler Characteristics for Polyhedra

LEONHARE EULER 1707-1783	Name	Image	$\begin{gathered} \text { Vertices } \\ V \end{gathered}$	Edges E	Faces F	Euler characteristic: $V-E+F$
	Tetrahedron		4	6	4	2
	Hexahedron or cube		8	12	6	2
	Octahedron		6	12	8	2
	Dodecahedron		20	30	12	2
	Icosahedron		12	30	20	2

(Credit: Wikipedia)

$$
\chi(M) \equiv V-E+F(M: 2 d \text { closed surface })
$$

Actually true for any Convex/Spherical polyhedra!

Gauss-Bonnet Theorem

$$
\frac{1}{2 \pi} \int_{M} K d A=\chi(M)=2(1-g)
$$

where
M: 2d closed surface
K: Gauss Curvature , g: genus (\# handles)

$g=0$

$g=1$

$g=3$

Ideas inspired by this Line of Thoughts

- Discrete approach can be Exact for Topology of a Continuous Object (Combinatoric Topology)
- Bulk-Boundary Relationship plays a Central role in Topology (Homology)
- Topological Inumbrer/nvariant can be expressed as an Integral
(Differential Topology: Cohomology and Homotopy)

Integral Calculus is Important in Curved Manifold without Metric

Winding Numbers | $\left(S^{1} \rightarrow S^{1}\right)$

Contour integral in complex analysis

$$
w=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta \frac{d \theta^{\prime}}{d \theta}=\text { integer }
$$

Winding Number II $\left(S^{2} \rightarrow S^{2}\right)$

$$
w=\frac{1}{4 \pi} \int d x d y \boldsymbol{n} \cdot\left(\frac{\partial \boldsymbol{n}}{\partial x} \times \frac{\partial \boldsymbol{n}}{\partial y}\right)
$$

$$
w=1
$$

$w=-1$

A Primer of Topology for Physicists

- Manifold and Differential Forms

Stokes Theorem

- Mapping Degree/Winding Numbers

Kronecker Invariant, WZW Action

- Topology in Gauge Theory

Aharonov-Bohm Effect and Flux Quantum
Dirac Quantization for Magnetic Monopole Instantons and Theta Vacuum Index Theorem for Zero Modes and Anomaly

- Descent Equations:

Relations in Different Dimensions

Topology

Definition: Properties that remain unchanged under continuous (or smooth) deformation.

1. Combinatoric Topology: Pure Math
2. Algebraic Topology:
(1)Homotopy group, (2)Homology group, (3)Cohomology group 3. Differential Topology:

Differential forms \Rightarrow Integral topological invariants \Rightarrow Topological number
In physics we need to get a number to be compared with experiments, so topological numbers obtained by integral invariants are very useful in physics, though not every topological number can be expressed as an integral.

Integration over a smooth manifold

Manifolds are generalization of curves, surfaces, hyper-surfaces, etc.
A manifold (with dimension n) is defined by the following data:

1. Local coordinates patches (with n coordinates in each patch)

Fig: local coordinates for a 2 -sphere
2. In overlapping region(s), the coordinate transformations

$$
x^{\prime \mu}=f^{\mu}\left(x^{1}, x^{2}, \cdots, x^{n}\right), \quad(\mu=1,2, \cdots, n)
$$

must be smooth.
3. Collection of all admissible coordinates patches that covers the whole manifold, a differential structure).
Here, properties 2 and 3 contain global information.

Integration elements

In \mathbb{R}^{3}, we have the following integrations.
(1) Line integral $\int_{c} \vec{A} \cdot d \vec{x}$
(2) Surface integral $\int_{S} \vec{E} \cdot d \vec{\sigma}$
(3) Volume integral $\int_{V} f(\vec{x}) d \tau$

In higher dimensions, the surface and volume elements are not vector and scalar but anti-symmetric tensors.

$$
\begin{aligned}
d \vec{\sigma} & \rightarrow \quad d \sigma^{\mu \nu}=d x^{\mu} \wedge d x^{\nu} \\
d \tau & \rightarrow \quad d \tau^{\mu \nu \lambda}=d x^{\mu} \wedge d x^{\nu} \wedge d x^{\lambda}
\end{aligned}
$$

Here, for example, an volume element formed by three infinitesimal non-planar vectors $\delta u_{a}(a=1,2,3)$ is understood as

$$
\begin{equation*}
d x^{\mu} \wedge d x^{\nu} \wedge d x^{\lambda} \rightarrow \epsilon^{a b c}\left(\delta u_{a}\right)^{\mu}\left(\delta u_{b}\right)^{\nu}\left(\delta u_{c}\right)^{\lambda} \tag{1}
\end{equation*}
$$

Differential forms as "integrands"

The differential k-form (of degree k) is

$$
\omega=\frac{1}{k!} \omega_{\mu_{1} \ldots \mu_{k}} d x^{\mu_{1}} \wedge \ldots \wedge d x^{\mu_{k}}
$$

where $\omega_{\mu_{1} \ldots \mu_{k}}$ and $d x^{\mu_{1}} \wedge \ldots \wedge d x^{\mu_{k}}$ are totally anti-symmetric, respectively. We have following properties:
(1) $d x^{\mu} \wedge d x^{\nu}=-d x^{\nu} \wedge d x^{\mu}$. More generally,
$\omega_{1} \wedge \omega_{2}=(-1)^{\operatorname{deg}\left(\omega_{1}\right) \cdot \operatorname{deg}\left(\omega_{2}\right)} \omega_{2} \wedge \omega_{1}$.
(2) Define: $d \omega=\frac{1}{k!} \frac{\partial \omega_{\mu_{1} \ldots \mu_{k}}}{\partial x^{\mu}} d x^{\mu} d x^{\mu_{1}} \wedge \ldots \wedge d x^{\mu_{k}}$.

Namely we have $d \equiv \frac{\partial}{\partial x^{\mu}} d x^{\mu} \wedge$.
(3) $d^{2}=0$ (Most important property)
(4) Leibniz Rule: $d\left(\omega_{1} \wedge \omega_{2}\right)=\left(d \omega_{1}\right) \wedge \omega_{2}+(-1)^{\operatorname{deg} \omega_{1}} \omega_{1} \wedge\left(d \omega_{2}\right)$

Differential Forms (cont.)

(5) Given a map $f: M \rightarrow N,\left(x^{\mu} \mapsto y^{\mu}\right)$, then for a k-form ω on N we obtain a form

$$
\begin{aligned}
f^{*} \omega & =\frac{1}{k!} \omega_{\alpha_{1}, \ldots \alpha_{k}}(y(x)) d y^{\alpha_{1}}(x) \wedge \ldots \wedge y^{\alpha_{k}}(x) \\
& =\frac{1}{k!} \omega_{\alpha_{1}, \ldots \alpha_{k}}(y(x)) \frac{\partial y^{\alpha_{1}}}{\partial x^{\mu_{1}}} \ldots \frac{\partial y^{\alpha_{k}}}{\partial x^{\mu_{k}}} d x^{\mu_{1}} \wedge \ldots \wedge d x^{\mu_{k}}
\end{aligned}
$$

defined on M. This operation is called Pull-Back.
(6) Stoke's Theorem describes the Bulk-Boundary Relation:

$$
\int_{V} d \omega=\int_{\partial V} \omega
$$

Corollary: If ω is a closed form, i.e. $d \omega=0$, then $\int_{S} \omega$ is unchanged under smooth deformation of the compact manifold S. (A compact manifold has no boundary.)
Therefore, a closed form is always associated with an integral topological invariant. Useful topological integral invariants include mapping degrees, or winding numbers, and Chern numbers.

Stokes' Theorem in 3 dimensions

For 0-form $f(\vec{x}) \equiv f(x, y, z)$, then 1-form $d f=\frac{\partial f}{\partial x^{i}} d x^{i}$
For 1-form $A=A_{i}(\vec{x}) d x^{i}$, we have two possible derivations
Curl (2-form) : $d A=\frac{1}{2} \frac{\partial A_{j}}{\partial x^{i}} d x^{i} \wedge d x^{j} \quad, \quad(d A)_{i j}=\epsilon_{i j k}(\nabla \times \vec{A})_{k}$
Dual (2-form): $\quad * A=\frac{1}{2} \epsilon_{i j k} A_{k} d x^{i} \wedge d x^{j}$,
Divergence (0-form): $\quad d * A=\frac{\partial}{\partial x^{l}} A_{k}\left(\frac{1}{2} \epsilon_{i j k}\right) d x^{l} \wedge d x^{i} \wedge d x^{j}$
$*(d * A)=\epsilon_{i j l}(d * A)_{i j l}=\nabla \cdot \vec{A}$
Stokes Theorem unifies the usual Green's, Stokes's and Gausss's Theorems:

Mapping Degree

$$
\varphi: M \rightarrow N \quad(\operatorname{dim}(M)=\operatorname{dim}(N), M, N \text { are compact and oriented })
$$

Intuition: The image of $\varphi(M)$ must cover N an integer times.
Consider $\varphi: S^{1} \rightarrow S^{1}$

Fig: Map $S^{1} \rightarrow S^{1}$

$$
\begin{aligned}
\text { (1). } \theta \mapsto \theta^{\prime} & =\theta & & (0 \leq \theta<2 \pi), \text { it covers } 1 \text { time. } \\
\text { (2). } \theta \mapsto \theta^{\prime} & =2 \theta & & (0 \leq \theta<2 \pi), \text { it covers } 2 \text { time. } \\
\text { (3). } \theta \mapsto \theta^{\prime} & =\theta & & (0 \leq \theta<\pi) \\
& =2 \pi-\theta & & (\pi \leq \theta<2 \pi)
\end{aligned}
$$

it covers 0 times.
The (integer) number of times that $f(M)$ covers N can be expressed bv an integral mathematicallv.

Mapping degree (cont.)

Mapping degree or winding number:

$$
\operatorname{deg}(\varphi)=\frac{\int_{M} \varphi^{*} \omega}{\int_{N} \omega}
$$

where ω is n -form on N (Volume form).
Example 1. Kronecker Integral: $N=S^{n}$
$\varphi: M \rightarrow S^{n} \quad\left(S^{n}\right.$ is unit sphere $\left(\sum_{\alpha=1}^{n+1}\left(y^{\alpha}\right)^{2}=1\right)$)
So we have $\sum_{\alpha}^{n+1}\left(\varphi^{\alpha}(x)\right)^{2}=1 \quad$ (unit vector in \mathbb{R}^{n+1})
Take $\omega=$ to be the volume element

$$
\operatorname{deg}(\varphi)=\frac{1}{V_{n}} \int d^{n} \times \frac{1}{n!} \varepsilon^{\mu_{1} \ldots \mu_{n}} \varepsilon_{\alpha_{1} \ldots \alpha_{n+1}} \varphi^{\alpha_{1}}(x) \frac{\partial \varphi^{\alpha_{2}}(x)}{\partial x^{\mu_{1}}} \ldots \frac{\partial \varphi^{\alpha_{n+1}}(x)}{\partial x^{\mu_{n}}}
$$

with $\quad V_{n}=\frac{(n+1) \pi^{\frac{n+1}{2}}}{\Gamma\left[\frac{1}{2}(n+3)\right]}$.

Properties of Mapping Degree

We have the following properties:
Homotopy Invariant: $\operatorname{deg}(\varphi)$ is homotopic invariant.
Definition: We say $\varphi_{1} \sim \varphi_{2}$ if exists smooth $F: M \times I \rightarrow N$, such that

$$
F(x, t=0)=\varphi_{1}(x), \quad F(x, t=1)=\varphi_{2}(x)
$$

(F represents the process in which φ_{1} is deformed to φ_{2})
$\varphi_{1} \sim \varphi_{2} \Rightarrow \operatorname{deg}\left(\varphi_{1}\right)=\operatorname{deg}\left(\varphi_{2}\right)$
Note. The converse is NOT true generally, but true in Kronecker's case. We have Hopf Theorem. Suppose M is connected, compacted and oriented. For maps $\varphi_{1}, \varphi_{2}: M \rightarrow S^{n},(\operatorname{dim}(M)=n)$. We have

$$
\varphi_{1} \sim \varphi_{2} \Leftrightarrow \operatorname{deg}\left(\varphi_{1}\right)=\operatorname{deg}\left(\varphi_{2}\right)
$$

Homotopy Integral Invariant (cont.)

Example 2: The case when $N=G$ (Lie Group)
Here $\operatorname{dim}(M) \neq \operatorname{dim}(N)$ is allowed.
Consider a map $g: M \rightarrow G,(x \mapsto g(x), g(x) \in G)$. The form

$$
\operatorname{Tr}\left\{\left[g^{-1}(x) d g(x)\right]^{k}\right\}
$$

is the pull-back on M of $\left[g^{-1} d g\right]^{k}$ on G. Here $g^{-1} d g$ is the Cartan-Maurer 1-form on G :

$$
g^{-1} d g=\sum_{a=1}^{r} T^{a} V_{\alpha}^{a}(g) d g^{\alpha}
$$

Where $r=\operatorname{dim}(G)$ and g^{α} are coordinates on G. So the pull-back is given by

$$
g^{-1}(x) d g(x)=\sum_{a=1}^{r} T^{\alpha} \widetilde{V}_{\mu}^{a}(g(x)) d x^{\mu}
$$

where $\widetilde{V}_{\mu}^{a}=V_{\alpha}^{a}(g(x)) \frac{\partial g^{\alpha}}{\partial x^{\mu}}$.

Homotopy Integral Invariant (cont.)

Let us define $w[g(x)]=c_{k} \int_{M} \operatorname{Tr}\left\{\left[g^{-1}(x) d g(x)\right]^{k}\right\}$.
Lemma. $\operatorname{Tr}\left(g^{-1} d g\right)^{k}=0, \quad$ if $k=$ even;

$$
\mathrm{d} \operatorname{Tr}\left(\mathrm{~g}^{-1} d g\right)^{k}=0, \quad \text { if } k=o d d
$$

When M is a k-sphere, S^{k} with $k=o d d, c_{k}=\frac{\left(\frac{k-1}{2}\right)!}{(2 \pi)^{\frac{k+1}{2}} k!}$.
Theorem. $w[g(x)]=$ integer .
Application: In gauge theories, a map $g: M \rightarrow G$ is called a gauge transformation and $w(g)$, if non-zero, is called the winding number of the large gauge transformation f.
Example 3: $M=S^{3}, N=S U(2)$. In this case, $w(g)$ can be calculated by either of the above formulas.
Let us define $\left(g_{1} \circ g_{2}\right)(x)=g_{1}(x) \cdot g_{2}(x)$. Then we have the following property:

$$
\begin{gathered}
w\left(g_{1} \circ g_{2}\right)=w\left(g_{1}\right)+w\left(g_{2}\right) \\
\operatorname{Tr}\left[\left(g_{1} g_{2}\right)^{-1} d\left(g_{1} g_{2}\right)\right]^{3}=\operatorname{Tr}\left[\left(g_{1}^{-1} d g_{1}\right)\right]^{3}+\operatorname{Tr}\left[\left(g_{2}^{-1} d g_{2}\right)^{3}\right]+d(\text { something }) .
\end{gathered}
$$

Reference Books

1. H. Flanders, "Differential Forms with Applications to the Physical Sciences", (Dover Publications, 1989)
2. C. Nash and S. Sen, "Topology and Geometry for Physicists", (Academic Press, Inc. , London, 1983)

These are suitable for this class. For advanced textbooks see, e.g.,
3. Y. Choquet-Bruhat, C. Dewitt-Morette and M. Dillard-Bleick, "Anaysis, Manifolds and Physics" , Revised Edition, (North-Holland, Amsterdam, 1982)
4. T. Frankel, "The Geometry of Physics -- An Introduction", (Cambridge University Press, 1997)

Problems

1. Given $\alpha=2 y z \mathrm{dx}+x^{2} \mathrm{dy}+\mathrm{xyzdz}, \beta=\sin \mathrm{xdx}+$ cos $y \mathrm{~d} y$, compute (1) $\alpha \wedge \beta$, and (2) d α.
2. Given α and β as given above, explicitly compute (3) $d(d \alpha)$ and (4) $d(\alpha \wedge \beta)$.
3. If further $\gamma=3 z^{3} \mathrm{~d} \mathrm{x}+\left(x^{2}+y^{2}+z^{2}\right) \mathrm{d} y+5 y^{2} \mathrm{dz}$, compute $\alpha \wedge \beta \wedge \gamma=$?
4. Consider a 2 -sphere S^{2}, described by $x^{2}+y^{2}+z^{2}=1$.

Show that its surface element is given by $\beta=x d y \wedge d z+y d z \wedge d x+z d x \wedge d y$.
Hint: Use the polar coordinates: $x=\sin \theta \cos \phi, y=\sin \theta \sin \phi, z=\cos \theta$.
prove that $\beta=\sin \theta d \theta \wedge d \phi, d \beta=3 d x \wedge d y \wedge d z$.

End

