# Lecture 3

## Brief Review of Topology and Geometry I -- Topological Numbers & Differential Forms

Yong-Shi Wu University of Utah

(March 13, 2020)

# Prologue: Paradigms in Condensed Matter Physics

### **The Search for New States/Phases of Matter**

The search for new elements led to a golden age of chemistry.

The search for new particles led to the golden age of particle physics.

Now in a **golden age of condensed matter physics**, we ask: what are the possible fundamental states of matter?

(Known in early 20<sup>th</sup> century)





Crystal: Broken translational symmetry

Magnet: Broken rotational symmetry



Superconductor: Broken gauge symmetry

Landau-Ginzburg-Wilson Paradigm (CMT)

- Classical Phase Transitions:
  - ✓ Associated with symmetry breaking
  - ✓ Characterized by local order parameter(s)
  - ✓ Disorder-Order Transition driven by thermal fluctuations
     Examples: superfluids, ferromagnetism, superconductivity
- Landau-Fermi Liquid Theory:
  - ✓ Quasi-particles are fermions (existence of Fermi surface)
  - ✓ Quasiparticles have same charge and spin (quantum numbers) as electrons
  - ✓ Electron interactions incorporated in energy as functional of quasiparticle occupation number (quasiparticle energy and Landau parameters)
     Examples: Helium 3, many metals etc
- Common Feature: Can be understood by Renormalization Group Flow Fixed Points (Wilson & Shankar)

Topological Order: Beyond the Landau Paradigm

- Novel phases at T=0 due to quantum effects (quantum matter)
- No symmetry breaking, no local order parameter(s)
- Characterized by a topological number
- Robust against weak disorders and interactions
- Correspondence between bulk and edge (in 2d) /surface (in 3d)
- Topology-dependent ground state degeneracy
- Fractionalization of quantum numbers (of quasiparticles)
- Fractional (exchange and exclusion) statistics of quasiparticles
- Intricate interplay between symmetries and topological orders
- Examples: quantum Hall effect, Mott insulators, quantum spin Hall effect, quantum spin liquids, topological insulators/superconductors, Dirac/Weyl semimetals, connection w/ fundamental Physics etc

### Respondence to Professor Wen's Classes

• Class 1: Symmetry Breaking in T=0 Quantum Phase Transition (with the example of the 1d Transverse Ising Model)

• Class 2: Topological Order (beyond Landau's paradigm) (in the context of String-Net Models)

# **A Primer of Topology**



### Surface of Orange, Mug and Pretzel







### Surface of Orange, Mug and Pretzel



#### Topology: Properties unchanged under continuous deformations

### Surface of Orange, Mug and Pretzel



# How to describe and characterize topological differences between these three things?

### Königsberg Seven Bridge Problem



**Problem:** 

Is it possible for a walker to go through all several bridges only once and to return to the starting position?

[source: MacTutor History of Mathematics Archive]

# Euler's Solution of the Seven Bridge Problem



Swistzland Stamp (2207)

Impossible! Because each vertex is connected to an odd number of links. The Seven bridges of Königsberg



Credit: Aiden Ball

### Euler Characteristics for Polyhedra



| Name               | Image | Vertices<br>V | Edges<br><i>E</i> | Faces<br>F | Euler characteristic:<br>V - E + F |
|--------------------|-------|---------------|-------------------|------------|------------------------------------|
| Tetrahedron        |       | 4             | 6                 | 4          | 2                                  |
| lexahedron or cube | 1     | 8             | 12                | 6          | 2                                  |
| Octahedron         |       | 6             | 12                | 8          | 2                                  |
| Dodecahedron       |       | 20            | 30                | 12         | 2                                  |
| Icosahedron        |       | 12            | 30                | 20         | 2                                  |

(Credit: Wikipedia)

 $\chi(M) \equiv V-E+F$  (M: 2d closed surface)

Actually true for any Convex/Spherical polyhedra!



### **Gauss-Bonnet Theorem**

$$\frac{1}{2\pi} \int_{M} K dA = \chi(M) = 2(1-g).$$

where

- M: 2d closed surface
- K: Gauss Curvature , g: genus (# handles)







### Ideas inspired by this Line of Thoughts

- Discrete approach can be Exact for Topology of a Continuous Object (Combinatoric Topology)
- Bulk-Boundary Relationship plays a Central role in Topology (Homology)
- Topological Inumbrer/nvariant can be expressed as an Integral (Differential Topology: Cohomology and Homotopy)

Integral Calculus is Important in Curved Manifold without Metric

## Winding Numbers 1 ( $S^1 \rightarrow S^1$ )

Contour integral in complex analysis





$$w = \frac{1}{2\pi} \int_0^{2\pi} d\theta \, \frac{d\theta'}{d\theta} = integer$$

# Winding Number II $(S^2 \rightarrow S^2)$



### A Primer of Topology for Physicists

- Manifold and Differential Forms Stokes Theorem
- Mapping Degree/Winding Numbers
   Kronecker Invariant, WZW Action
- Topology in Gauge Theory Aharonov-Bohm Effect and Flux Quantum Dirac Quantization for Magnetic Monopole Instantons and Theta Vacuum Index Theorem for Zero Modes and Anomaly
- Descent Equations: Relations in Different Dimensions

### Topology

Definition:Properties that remain unchanged under continuous (or smooth) deformation.

- 1. Combinatoric Topology: Pure Math
- 2. Algebraic Topology:

(1)Homotopy group, (2)Homology group, (3)Cohomology group

3. Differential Topology:

Differential forms ⇒ Integral topological invariants ⇒ Topological number

In physics we need to get a number to be compared with experiments, so topological numbers obtained by integral invariants are very useful in physics, though not every topological number can be expressed as an integral.

#### Integration over a smooth manifold

Manifolds are generalization of curves, surfaces, hyper-surfaces, etc. A manifold (with dimension n) is defined by the following data: 1. Local coordinates patches (with *n* coordinates in each patch)



Fig: local coordinates for a 2-sphere

2. In overlapping region(s), the coordinate transformations

$$x'^{\mu} = f^{\mu}(x^1, x^2, \cdots, x^n), \quad (\mu = 1, 2, \cdots, n)$$

must be smooth.

3. Collection of all admissible coordinates patches that covers the whole manifold, a differential structure).

Here, properties 2 and 3 contain global information.

#### Integration elements

In  $\mathbb{R}^3$ , we have the following integrations.

(1) Line integral  $\int_c \vec{A} \cdot d\vec{x}$ 

(2) Surface integral  $\int_{S} \vec{E} \cdot d\vec{\sigma}$ 

(3) Volume integral  $\int_V f(\vec{x}) d\tau$ 

In higher dimensions, the surface and volume elements are not vector and scalar but anti-symmetric tensors.

$$d\vec{\sigma} \rightarrow d\sigma^{\mu\nu} = dx^{\mu} \wedge dx^{\nu}$$
$$d\tau \rightarrow d\tau^{\mu\nu\lambda} = dx^{\mu} \wedge dx^{\nu} \wedge dx^{\lambda}$$

Here, for example, an volume element formed by three infinitesimal non-planar vectors  $\delta u_a$  (a = 1, 2, 3) is understood as

$$dx^{\mu} \wedge dx^{\nu} \wedge dx^{\lambda} \rightarrow \epsilon^{abc} (\delta u_{a})^{\mu} (\delta u_{b})^{\nu} (\delta u_{c})^{\lambda} .$$
(1)

#### Differential forms as "integrands"

The differential k-form (of degree k) is

$$\omega=rac{1}{k!}\omega_{\mu_{1}...\mu_{k}}dx^{\mu_{1}}\wedge...\wedge dx^{\mu_{k}}$$
 ;

where  $\omega_{\mu_1...\mu_k}$  and  $dx^{\mu_1} \wedge ... \wedge dx^{\mu_k}$  are totally anti-symmetric, respectively. We have following properties: (1)  $dx^{\mu} \wedge dx^{\nu} = -dx^{\nu} \wedge dx^{\mu}$ . More generally,  $\omega_1 \wedge \omega_2 = (-1)^{deg(\omega_1) \cdot deg(\omega_2)} \omega_2 \wedge \omega_1$ . (2) Define:  $d\omega = \frac{1}{k!} \frac{\partial \omega_{\mu_1...\mu_k}}{\partial x^{\mu}} dx^{\mu} dx^{\mu_1} \wedge ... \wedge dx^{\mu_k}$ . Namely we have  $d \equiv \frac{\partial}{\partial x^{\mu}} dx^{\mu} \wedge$ . (3)  $d^2 = 0$  (Most important property) (4) Leibniz Rule:  $d(\omega_1 \wedge \omega_2) = (d\omega_1) \wedge \omega_2 + (-1)^{deg\omega_1} \omega_1 \wedge (d\omega_2)$ 

#### Differential Forms (cont.)

(5) Given a map  $f : M \to N, (x^{\mu} \mapsto y^{\mu})$ , then for a k-form  $\omega$  on N we obtain a form

$$f^*\omega = \frac{1}{k!}\omega_{\alpha_1,\dots,\alpha_k}(y(x))dy^{\alpha_1}(x)\wedge\dots\wedge y^{\alpha_k}(x)$$
  
=  $\frac{1}{k!}\omega_{\alpha_1,\dots,\alpha_k}(y(x))\frac{\partial y^{\alpha_1}}{\partial x^{\mu_1}}\dots\frac{\partial y^{\alpha_k}}{\partial x^{\mu_k}}dx^{\mu_1}\wedge\dots\wedge dx^{\mu_k}$ 

defined on *M*. This operation is called **Pull-Back**.
(6) Stoke's Theorem describes the Bulk-Boundary Relation:

$$\int_{\boldsymbol{V}} d\omega = \int_{\partial \boldsymbol{V}} \omega$$

Corollary: If  $\omega$  is a closed form, i.e.  $d\omega = 0$ , then  $\int_{S} \omega$  is unchanged under smooth deformation of the compact manifold S. (A compact manifold has no boundary.)

Therefore, a closed form is always associated with an integral topological invariant. Useful topological integral invariants include mapping degrees, or winding numbers, and Chern numbers.

### Stokes' Theorem in 3 dimensions

For 0-form  $f(\vec{x}) \equiv f(x, y, z)$ , then 1-form  $df = \frac{\partial f}{\partial x^i} dx^i$ For 1-form  $A = A_i(\vec{x})dx^i$ , we have two possible derivations Curl (2-form):  $dA = \frac{1}{2}\frac{\partial A_j}{\partial x^i}dx^i \wedge dx^j$ ,  $(dA)_{ij} = \epsilon_{ijk}(\nabla \times \vec{A})_k$ Dual (2-form):  $*A = \frac{1}{2}\epsilon_{ijk}A_kdx^i \wedge dx^j$ , Divergence (0-form):  $d*A = \frac{\partial}{\partial x^l}A_k(\frac{1}{2}\epsilon_{ijk})dx^l \wedge dx^i \wedge dx^j$  $*(d*A) = \epsilon_{ijl}(d*A)_{ijl} = \nabla \cdot \vec{A}$ 

Stokes Theorem unifies the usual Green's, Stokes's and Gausss's Theorems:

#### Mapping Degree

 $\varphi: M \to N$  (dim(M) = dim(N), M, N are compact and oriented)Intuition: The image of  $\varphi(M)$  must cover N an integer times. Consider  $\varphi: S^1 \to S^1$ 



Fig: Map  $S^1 \rightarrow S^1$ 

| $(1).\theta \mapsto \theta' = \theta$  | $(0 \le \theta < 2\pi)$ , it covers 1 time. |
|----------------------------------------|---------------------------------------------|
| $(2).\theta \mapsto \theta' = 2\theta$ | $(0 \le \theta < 2\pi)$ , it covers 2 time. |
| $(3).\theta \mapsto \theta' = \theta$  | $(0 \le 	heta < \pi)$                       |
| $=2\pi-\theta$                         | $(\pi \le \theta < 2\pi)$                   |

it covers 0 times.

The (integer) number of times that f(M) covers N can be expressed by an integral mathematically.

#### Mapping degree (cont.)

Mapping degree or winding number:

$$deg(\varphi) = \frac{\int_M \varphi^* \omega}{\int_N \omega}$$

where  $\omega$  is n-form on N (Volume form). Example 1. Kronecker Integral:  $N = S^n$  $\varphi: M \to S^n$  ( $S^n$  is unit sphere  $(\sum_{\alpha=1}^{n+1} (y^{\alpha})^2 = 1)$ .) So we have  $\sum_{\alpha}^{n+1} (\varphi^{\alpha}(x))^2 = 1$  (unit vector in  $\mathbb{R}^{n+1}$ ) Take  $\omega$  = to be the volume element

$$deg(\varphi) = \frac{1}{V_n} \int d^n x \frac{1}{n!} \varepsilon^{\mu_1 \dots \mu_n} \varepsilon_{\alpha_1 \dots \alpha_{n+1}} \varphi^{\alpha_1}(x) \frac{\partial \varphi^{\alpha_2}(x)}{\partial x^{\mu_1}} \dots \frac{\partial \varphi^{\alpha_{n+1}}(x)}{\partial x^{\mu_n}}$$
  
with  $V_n = \frac{(n+1)\pi^{\frac{n+1}{2}}}{\Gamma[\frac{1}{2}(n+3)]}.$ 

#### **Properties of Mapping Degree**

We have the following properties: **Homotopy Invariant**:  $deg(\varphi)$  is homotopic invariant. **Definition**: We say  $\varphi_1 \sim \varphi_2$  if exists smooth  $F: M \times I \rightarrow N$ , such that

 $F(x, t = 0) = \varphi_1(x), \quad F(x, t = 1) = \varphi_2(x)$ 

(*F* represents the process in which  $\varphi_1$  is deformed to  $\varphi_2$ )  $\varphi_1 \sim \varphi_2 \Rightarrow deg(\varphi_1) = deg(\varphi_2)$ 

Note. The converse is NOT true generally, but true in Kronecker's case. We have **Hopf Theorem.** Suppose M is connected, compacted and oriented. For maps  $\varphi_1, \varphi_2: M \to S^n, (dim(M) = n)$ . We have

$$\varphi_1 \sim \varphi_2 \Leftrightarrow deg(\varphi_1) = deg(\varphi_2)$$

#### Homotopy Integral Invariant (cont.)

Example 2: The case when N = G (Lie Group) Here dim $(M) \neq$  dim(N) is allowed. Consider a map  $g : M \rightarrow G$ ,  $(x \mapsto g(x), g(x) \in G)$ . The form

$$Tr\{[g^{-1}(x)dg(x)]^k\}$$

is the pull-back on M of  $[g^{-1}dg]^k$  on G. Here  $g^{-1}dg$  is the Cartan-Maurer 1-form on G:

$$g^{-1}dg = \sum_{a=1}^{r} T^{a}V_{\alpha}^{a}(g)dg^{\alpha}$$

Where r = dim(G) and  $g^{\alpha}$  are coordinates on G. So the pull-back is given by

$$g^{-1}(x)dg(x) = \sum_{a=1}^{r} T^{\alpha} \widetilde{V}^{a}_{\mu}(g(x))dx^{\mu} ,$$

where  $\widetilde{V}_{\mu}^{a} = V_{\alpha}^{a}(g(x))\frac{\partial g^{\alpha}}{\partial x^{\mu}}$ .

#### Homotopy Integral Invariant (cont.)

Let us define  $w[g(x)] = c_k \int_M Tr\{[g^{-1}(x)dg(x)]^k\}.$ Lemma.  $Tr(g^{-1}dg)^k = 0$ , if k = even;  $dTr(g^{-1}dg)^k = 0, \quad if \ k = odd.$ When M is a k-sphere,  $S^k$  with k = odd,  $c_k = \frac{(\frac{k-1}{2})!}{(2\pi)^{\frac{k+1}{2}}k!}.$ 

#### **Theorem.** w[g(x)] = integer.

Application: In gauge theories, a map  $g : M \to G$  is called a gauge transformation and w(g), if non-zero, is called the winding number of the *large gauge transformation* f.

Example 3:  $M = S^3$ , N = SU(2). In this case, w(g) can be calculated by either of the above formulas.

Let us define  $(g_1 \circ g_2)(x) = g_1(x) \cdot g_2(x)$ . Then we have the following property:

$$w(g_1 \circ g_2) = w(g_1) + w(g_2).$$

 $Tr[(g_1g_2)^{-1}d(g_1g_2)]^3 = Tr[(g_1^{-1}dg_1)]^3 + Tr[(g_2^{-1}dg_2)^3] + d(\text{something}).$ 

### Reference Books

- 1. H. Flanders, "Differential Forms with Applications to the Physical Sciences", (Dover Publications, 1989)
- 2. C. Nash and S. Sen, "Topology and Geometry for Physicists", (Academic Press, Inc., London, 1983)

These are suitable for this class. For advanced textbooks see, e.g.,

- 3. Y. Choquet-Bruhat, C. Dewitt-Morette and M. Dillard-Bleick, "Anaysis, Manifolds and Physics", Revised Edition, (North-Holland, Amsterdam, 1982)
- 4. T. Frankel, "The Geometry of Physics -- An Introduction", (Cambridge University Press, 1997)

### Problems

1. Given  $\alpha = 2yzdx + x^2dy + xyzdz$ ,  $\beta = sinxdx + cosydy$ , compute (1)  $\alpha \wedge \beta$ , and (2)  $d\alpha$ .

2. Given  $\alpha$  and  $\beta$  as given above, explicitly compute (3) d(d $\alpha$ ) and (4) d( $\alpha \land \beta$ ).

- 3. If further  $\gamma = 3z^3 dx + (x^2 + y^2 + z^2) dy + 5y^2 dz$ , compute  $\alpha \land \beta \land \gamma = ?$
- 4. Consider a 2-sphere S<sup>2</sup>, described by x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = 1.
  Show that its surface element is given by β = xdy∧dz + ydz∧dx + zdx∧dy.
  Hint: Use the polar coordinates: x = sinθcosφ, y = sinθsinφ, z = cosθ.
  prove that β = sinθdθ∧dφ, dβ = 3dx∧dy∧dz.

