量子研究院李贵新课题组发表“非线性光学准晶超构表面”最新研究成果
近日,南方科技大学材料科学与工程系副教授、量子科学与工程研究院李贵新课题组在《Advanced Materials》(影响因子:21.950)发表了一篇非线性光学超构表面领域的最新研究成果。
1982年,以色列科学家Dan Shechtman在实验中观测到具有十重对称性的电子衍射图案,但根据当时的国际晶体衍射学手册,具有这种对称性的晶体是不可能存在的。Shechtman的研究于1984年发表在《物理评论快报》上,文章在学术界引起了很大反响。许多科学家发现他们也曾观测到过类似的“不可能”对称性,并开始重新审视之前的工作。由此,具有宏观对称性的准晶的发现掀起了一次晶体学的革命,改变了晶体的定义,新的研究领域从中诞生并得到了广泛的应用,Shechtman也因此荣获了2011年诺贝尔化学奖。
图1.非线性光学超构表面的线性(a)和非线性倍频(b)光学衍射示意图及其结构设计;(c)(d)(e)分别为彭罗斯准晶以及六角旋转、对称准晶,其中的小三角形为黄金做成的光学纳米结构
在材料学领域,物质的性质往往和其微观构成相关。准晶的诸多优良特性就与其组分、原子准周期的排布有关。李贵新课题组研究的光学超构材料,则是以尺度远小于工作波长的微纳结构,利用等离激元共振等光物理过程,在组分材料仍为常规材料的情况下等效地实现常规材料无法实现的功能。在各类超构材料中,二维超构表面的优点最为突出,它能以超薄的器件实现复杂的光学功能,且设计灵活、结构紧凑、易于加工、方便集成,不但有极高的实用价值,还为许多理论研究提供了平台。二维超构表面克服了三维超构材料损耗大、加工难度大的问题,成为了新兴研究热点,更是为光学超构新材料设计方面提供了与众不同的思路。
超构表面从材料来看,有金属、半导体、电介质或复合材料之分;从响应方式来看,有主动和被动之分;从物理过程来看,有线性和非线性之分。此前的研究已经得出超构表面单元的局域对称性往往会影响到其光学性质的结论,但对结构单元排布方式的全局对称性影响的研究还比较少,尤其是在非线性光学超构表面领域。
此项成果中,课题组研究提出并制备了非线性光学准晶超构表面,并研究了超构单元局域对称性和排布方式的全局对称性对超构表面远场非线性光辐射的共同影响。该非线性光学准晶超构表面运用了基于非线性光学贝里几何相位的金属等离激元结构单元,依据经典的彭罗斯准周期拼接和具有六重对称性的六角准周期拼接形成了不同种类的准晶结构。彭罗斯结构的准周期拼接具有五重对称性,其衍射图案则具有十重对称性,这些都是晶体衍射定理所不允许的对称性。而六角准周期拼接是2017年提出的一种准周期拼接,它具有晶体衍射定理所允许的六重对称性,却并不遵从短程有序的规律。这两种拼接方式可以与某些特定的比例联系起来,这些比例由不同阶次的迭代规则决定:彭罗斯结构对应一阶迭代过程,其比例是人们熟知的“黄金分割比”,而六角准周期晶格对应三阶过程,其比例可称为“黄铜分割比”。自六角准周期晶格从理论上提出以来,本项工作中的非线性光学准晶超构表面是首个利用黄铜分割比实验实现的人工光学结构。
图2.不同迭代方式作用于两种十二边形上生成的四种六角准周期拼接图案
非线性光学准晶超构表面中不同转向的超构单元对入射基频光的响应是均匀的,因此其线性光学衍射仅能反映超构表面的全局对称性,即晶格结构决定其远场光衍射。而在倍频实验中,即出射光的频率是入射光的两倍(如1200nm 变为600nm)。由于打破了超构单元的中心反演对称性并引入了非线性光学几何相位,其非线性光学衍射与晶格结构的局域对称性、全局对称性同时相关。因此,可以通过调控超构单元的指向分布,进而有效地调控倍频光衍射中的零级。非线性光学准晶超构表面这一概念或将为设计超构表面非线性光源、人工微纳光学结构材料提供新的思路。
南科大-香港浸会大学联培博士唐宇涛、南科大材料系博士后邓俊鸿为该论文并列第一作者,李贵新为论文通讯作者,香港浸会大学助理教授吴紫辉等参与了研究。该研究工作的开展得到了国家自然科学基金面上项目、南方科技大学启动配套经费等资助。
论文链接:
https://doi.org/10.1002/adma.201901188
From: