Essential Information

Name:Xie Hao Yuan

Position:Researcher

Email:xiehy@iqasz.cn

Office:Room 2304, 23/F, CFC Building, Shi Hua Road, Futian District, Shenzhen, Guangdong

Research field:Materials and Chemical Research


Education background

1. 09.2008 – 08.2012: Doctor of Philosophy, E&EE, The University of Manchester, U.K.

2. 09.2003 – 08.2007: First Class, M.Eng (Hons), E&EE, University College London, U.K.


Working experience

1. 12.2020-now: Visiting Scholar, Southern University of Science and Technology, Shenzhen, Guangdong, P.R China

2. 12.2021-now: Researcher, Shenzhen International Quantum Academy, Shenzhen, Guangdong, P.R China

3. 12.2020-12.2021: Research Assistant Professor, Shenzhen Futian Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, P.R China

4. 07.2019-11.2020: Associate Professor, College of Physics and Electronic Information, Yunnan Normal University, Kunming, Yunnan, P.R China

5. 03.2016 – 08.2016: Research Associate, Dept. of Computer Science and Technology, University of Bedfordshire, Luton, U.K.

6. 03.2014 – 09.2014: Visiting Academics, School of EEE, The University of Manchester, U.K.

7. 10.2013 – 07.2015: Postdoctoral, School of Physics, Peking University, Beijing, P.R China


Papers and Patents

1. Tse, G., 2022. Evaluation of the electronic, optical, elastic, mechanical, and vibrational properties of B2O3 using hybrid functional (Online Ready)

2. Tse, G., 2022. Density functional theory: The structural, electronic, optical, mechanical, and vibrational properties of bulk and Te-doped SnSe2, 36 (20) 2250123

3. Tse, G., 2022. The first principle study: electronic, optical, elastic, and mechanical properties of SnO, SSRN electronic journal

4. Tse, G., 2022. Evaluation of the structural, electronic, optical, elastic, and mechanical properties of triclinic Sn-doped Ga2O3 using density functional theory, Computational Condensed Matter. 30, e00641

5. Tse, G., 2022. Evaluation of the structural, electronic, optical, elastic, and mechanical properties of As2Se3. Computational Condensed Matter. 30, e00633

6. Tse, G., 2021. Evaluation of the structural, electronic, optical, elastic, mechanical and vibrational properties of graphene-like g-GaN using density functional theory. AIP Advance, 11 (11) 115211

7. Tse, G., 2021. The structural, electronic, optical, elastic, and mechanical properties of triclinic Ga2O3 by density functional theory. Computational Condensed Matter. 29, e00593

8. Tse, G., 2021. The structural, electronic, optical, elastic, mechanical and vibrational  properties of hexagonal h-ZnS by density functional theory. Computational Condensed Matter. 28, e00572

9. Tse, G., 2021. The electronic and elastic properties in SiO2-Al-SiO2 with density functional theory. Mod. Phys. Lett. B, 35 (8) 2150136

10. Tse, G., 2021. The optical and elastic properties in ZnO by density functional theory. Computational Condensed Matter. 26, e00525

11. Tse, G. and Liu, Y., 2019, The first principle study: electronic optical and elastic properties of HfTe5 metal pentatelluride, Material Research Express 6,  116315

12. Tse, G. and Yu, D., 2016. The electronic and structural properties in Ca 2 TiMnO 6 double perovskite: The first principle study. Computational Condensed Matter. 9, 33-39

13. Tse, Geoffrey, and Dapeng Yu. (2016) “The first principle study: structural, electronic, optical, elastic and phonon properties of bulk and monolayer Molybdenum Ditelluride”, Journal of Nanoelectronics and Optoelectronics, 12(2) 89-99

14. Tse, Geoffrey, and Dapeng Yu. (2016) “The structural, electronic, optical and elastic properties of ε-type Gallium Selenide: a first study”, Journal of Nanoelectronics and Optoelectronics, IUMRS-ICAM 2015 Vol. 11 No. 5 561-567

15. Tse, Geoffrey, and Dapeng Yu. (2016) “The first principle study: electronic properties of graphene on Boron Phosphide”, Journal of Nanoelectronics and Optoelectronics, 11(3) 334-338

16. Tse, G., & Yu, D. (2016). The first principle study of electronic and optical properties in Rhombohedral BiAlO3. Modern Physics Letters B, 30(3) 1650006.

17. Tse, G., & Yu, D. (2015). The bandgap distribution investigated across the strain-induced bending ZnO nanowire. Modern Physics Letters B, 30(5) 1650048.

18. Yu, G. T. D. (2015). The first principle study electronic and optical properties in BiGaO3. Asian Journal of Current Engineering and Maths, 4(5), 56-61.

19. Yu, G. T. D. (2015). First principle study optical properties of CH3NH3PbI3 and CH3NH3SnI3 for perovskite photovoltaics. Asian Journal of Current Engineering and Maths, 4(5), 49-55.

20. Tse, G., & Yu, D. (2015). The first principle study: Electronic and optical properties in Bi 2 Se 3. Computational Condensed Matter, 4, 59-63.

21. Al-Zahrani, Hanan YS, Joydeep Pal, Max A. Migliorato, Geoffrey Tse, and Dapeng Yu. "Piezoelectric field enhancement in III–V core–shell nanowires."Nano Energy (2014).

22. Lin, F., Chen, S. W., Meng, J., Tse, G., Fu, X. W., Xu, F. J., ... & Yu, D. P. (2014). Graphene/GaN diodes for ultraviolet and visible photodetectors. Applied Physics Letters, 105(7), 073103.

23. Migliorato, M. A., J. Pal, R. Garg, G. Tse, H. Y. S. Al-Zahrani, U. Monteverde, S. Tomić et al. "A review of non linear piezoelectricity in semiconductors." InELECTRONIC, PHOTONIC, PLASMONIC, PHONONIC AND MAGNETIC PROPERTIES OF NANOMATERIALS, vol. 1590, pp. 32-41. AIP Publishing, 2014.

24. Ye, M., Quhe, R., Zheng, J., Ni, Z., Wang, Y., Yuan, Y., ... & Lu, J. (2014). Tunable band gap in germanene by surface adsorption. Physica E: Low-dimensional Systems and Nanostructures, 59, 60-65.

25. Tse, G., J. Pal, U. Monteverde, R. Garg, V. Haxha, M. A. Migliorato, and S. Tomić. "Non-linear piezoelectricity in zinc blende GaAs and InAs semiconductors." Journal of Applied Physics 114, no. 7 (2013): 073515.

26. Tse, G., J. Pal, R. Garg, V. Haxha, and M. A. Migliorato. "Non linear piezoelectricity in zincblende GaAs and InAs semiconductors." In Numerical Simulation of Optoelectronic Devices (NUSOD), 2012 12th International Conference on, pp. 85-86. IEEE, 2012.

27. Pal, J., Tse, G., Haxha, V., Migliorato, M. A., & Tomić, S. (2012, May). Strain dependence of internal displacement and effective charge in wurtzite III-N semiconductors. In Journal of Physics: Conference Series (Vol. 367, No. 1, p. 012006). IOP Publishing.

28. Pal, J., Tse, G., Haxha, V., Migliorato, M. A., & Tomić, S. (2012). Importance of non linear piezoelectric effect in Wurtzite III-N semiconductors. Optical and Quantum Electronics, 44(3-5), 195-203.

29. Pal, J., G. Tse, S. Tomić, and M. A. Migliorato. "Investigating the effect of non linear piezoelectricity on the excitonic properties of III-N semiconductor quantum dots." Semiconductors 96 (2006): 187602.

30. Pal, J., Tse, G., Haxha, V., Migliorato, M. A., & Tomić, S. (2011). Second-order piezoelectricity in wurtzite III-N semiconductors. Physical Review B, 84(8), 085211.

31. Pal, J., Tse, G., Haxha, V., Migliorato, M. A., & Tomić, S. (2011). Erratum: Second-order piezoelectricity in wurtzite III-N semiconductors [Phys. Rev. B 84, 085211 (2011)]. Physical Review B, 84(15), 159902.